delta | 無次元化した密度(\(\delta=\rho/\rho_c\))。 The nondimensional density (\(\delta=\rho/\rho_c\)). |
tau | 無次元化した温度の逆数(\(\tau=T_c/T\))。 The inverse of the nondimensional temperature (\(\tau=T_c/T\)). |
メンバ Member |
量 Quantity |
計算式(Wagner and Pruss (2002)の表6.4に基づく) Formula (from Table 6.4 of Wagner and Pruss (2002)) |
phi_o | 理想気体項\(\phi^o\)。 The ideal-gas part \(\phi^o\). |
\(\ln\delta+n_1^o+n_2^o\tau+n_3^o\ln\tau +\sum_{i=4}^8 n_i^o\ln[1-\exp(-\gamma_i^o\tau)]\) |
phi_delta_o | \(\phi_{\delta}^o \equiv \PartialDiff{\phi^o}{\delta}\) | \[\begin{equation*} \frac{1}{\delta} \end{equation*}\] |
phi_deltadelta_o | \(\phi_{\delta\delta}^o\equiv\PartialDDiff{\phi^o}{\delta}\) | \[\begin{equation*} -\frac{1}{\delta^2} \end{equation*}\] |
phi_tau_o | \(\phi_{\tau}^o \equiv \PartialDiff{\phi^o}{\tau}\) | \[\begin{equation*} n_2^o+\frac{n_3^o}{\tau} +\sum_{i=4}^8 n_i^o \gamma_i^o \left[\frac{1}{1-\exp(-\gamma_i^o\tau)}-1\right] \end{equation*}\] |
phi_tautau_o | \(\phi_{\tau\tau}^o \equiv \PartialDDiff{\phi^o}{\tau}\) | \[\begin{equation*} -\frac{n_3^o}{\tau^2} -\sum_{i=4}^8 \frac{n_i^o (\gamma_i^o)^2 \exp(-\gamma_i^o\tau)} {\left[1-\exp(-\gamma_i^o\tau)\right]^2} \end{equation*}\] |
phi_deltatau_o | \(\phi_{\delta\tau}^o \equiv \PartialCrossDiff{\phi^o}{\delta}{\tau}\) | \[\begin{equation*} 0 \end{equation*}\] |
\(i\) | \(n_i^o\) | \(\gamma_i^o\) |
1 | -8.32044648201 | |
2 | 6.6832105268 | |
3 | 3.00632 | |
4 | 0.012436 | 1.28728967 |
5 | 0.97315 | 3.53734222 |
6 | 1.27950 | 7.74073708 |
7 | 0.96956 | 9.24437796 |
8 | 0.24873 | 27.5075105 |