machine_learningヘッダファイルパッケージで用いている計算式

1. 数学関数の定義と微分形

関数softmax

(Formula used in machine_learning header file package; 1. Definitions and differential forms of mathematical functions — function softmax)



◆定義(Definition)

\[\begin{equation} f_i(y_0,\cdots,y_{J-1})=\frac{\exp(y_i)}{u}, \hspace{1em} u=\sum_{i’=0}^{J-1}\exp(y_{i’}) \hspace{2em} (i=0,\cdots,J-1) \end{equation}\]

◆微分形(Derivative)

\[\begin{eqnarray} \PartialDiff{f_i}{y_{i’}} &=& \frac{\exp(y_i)\delta_{ii’}}{u} -\frac{\exp(y_i)}{u^2}\PartialDiff{u}{y_{i’}} \nonumber \\ &=& \frac{\exp(y_i)}{u}\delta_{ii’} -\frac{\exp(y_i)}{u^2}\exp(y_{i’}) \nonumber \\ &=& \frac{\exp(y_i)}{u} \left[\delta_{ii’}-\frac{\exp(y_{i’})}{u}\right] \nonumber \\ &=& f_i(y_0,\cdots,y_{J-1}) \left[\delta_{ii’}-f_{i’}(y_0,\cdots,y_{J-1})\right] \nonumber \\ & & (i,i’=0,\cdots,J-1) \end{eqnarray}\]