machine_learningヘッダファイルパッケージで用いている計算式
1. 数学関数の定義と微分形
関数tanh
(Formula used in machine_learning header file package;
1. Definitions and differential forms of mathematical functions
— function tanh)
◆定義(Definition)
\[\begin{equation}
f(y)=\tanh(y)=\frac{\exp(y)-\exp(-y)}{\exp(y)+\exp(-y)}
\end{equation}\]
◆微分形(Derivative)
\[\begin{eqnarray}
f′(y)
&=& \left\{\left[\exp(y)+\exp(-y)\right]\left[\exp(y)+\exp(-y)\right]\right.
\nonumber \\
& & \left.-\left[\exp(y)-\exp(-y)\right]\left[\exp(y)-\exp(-y)\right]\right\}/
\nonumber \\
& & \left[\exp(y)+\exp(-y)\right]^2
\nonumber \\
&=& \frac{\left[\exp(y)+\exp(-y)\right]^2-\left[\exp(y)-\exp(-y)\right]^2}
{\left[\exp(y)+\exp(-y)\right]^2}
\nonumber \\
&=& \frac{\left[\exp(y)^2+2+\exp(-y)^2\right]
-\left[\exp(y)^2-2+\exp(-y)^2\right]}
{\left[\exp(y)+\exp(-y)\right]^2}
\nonumber \\
&=& \frac{4}{\left[\exp(y)+\exp(-y)\right]^2}
\nonumber \\
&=& \frac{4}{\exp(2y)+2+\exp(-2y)}
\end{eqnarray}\]