FDM_1D_verticalコマンドで用いているアルゴリズム

2. 方程式(離散化前)

(Algorithm used in FDM_1D_vertical command; 2. Equations before discretization)



水平方向には物理量が変化しない(\(\PartialDiff{}{x}=\PartialDiff{}{y}=0\)) と仮定すると、運動方程式は \[\begin{equation} \rho\PartialDiff{V_x}{t} =\PartialDiff{\tau_{xx}}{x} +\PartialDiff{\tau_{xy}}{y} +\PartialDiff{\tau_{xz}}{z} =\PartialDiff{\tau_{xz}}{z} \label{eq.motion.x} \end{equation}\] \[\begin{equation} \rho\PartialDiff{V_y}{t} =\PartialDiff{\tau_{yx}}{x} +\PartialDiff{\tau_{yy}}{y} +\PartialDiff{\tau_{yz}}{z} =\PartialDiff{\tau_{yz}}{z} \label{eq.motion.y} \end{equation}\] \[\begin{equation} \rho\PartialDiff{V_z}{t} =\PartialDiff{\tau_{zx}}{x} +\PartialDiff{\tau_{zy}}{y} +\PartialDiff{\tau_{zz}}{z} =\PartialDiff{\tau_{zz}}{z} \label{eq.motion.z} \end{equation}\] と書ける。これらの方程式の右辺に登場する応力成分は \(\tau_{xz}\), \(\tau_{yz}\), \(\tau_{zz}\)であり、 それらについて構成則を書き下すと \[\begin{equation} \PartialDiff{\tau_{xz}}{t} =\mu\left(\PartialDiff{V_x}{z}+\PartialDiff{V_z}{x}\right) =\mu\PartialDiff{V_x}{z} \label{eq.constitutive.x} \end{equation}\] \[\begin{equation} \PartialDiff{\tau_{yz}}{t} =\mu\left(\PartialDiff{V_y}{z}+\PartialDiff{V_z}{y}\right) =\mu\PartialDiff{V_y}{z} \label{eq.constitutive.y} \end{equation}\] \[\begin{equation} \PartialDiff{\tau_{zz}}{t} =\lambda\left( \PartialDiff{V_x}{x}+\PartialDiff{V_y}{y}+\PartialDiff{V_z}{z} \right)+2\mu\PartialDiff{V_z}{z} =(\lambda+2\mu)\PartialDiff{V_z}{z} \label{eq.constitutive.z} \end{equation}\] となる。したがって方程式は
に分離できることが分かる。 (\ref{eq.motion.y})(\ref{eq.constitutive.y})式は (\ref{eq.motion.x})(\ref{eq.constitutive.x})式の \(x\)を\(y\)で置き換えただけの形になっているので、 以下では(\ref{eq.motion.x})(\ref{eq.constitutive.x})式 および(\ref{eq.motion.z})(\ref{eq.constitutive.z})式のみを用いることにする。
Assuming no horizontal variation of physical quantities (\(\PartialDiff{}{x}=\PartialDiff{}{y}=0\)), the equation of motion is written as Eqs. (\ref{eq.motion.x})-(\ref{eq.motion.z}). Only the stress components \(\tau_{xz}\), \(\tau_{yz}\), and \(\tau_{zz}\) appear in the right hand sides of these equations, and constitutive laws for them are given by Eqs. (\ref{eq.constitutive.x})-(\ref{eq.constitutive.z}). Therefore the equations can be separated into
As Eqs. (\ref{eq.motion.y}) and (\ref{eq.constitutive.y}) have exactly the same forms as Eqs. (\ref{eq.motion.x}) and (\ref{eq.constitutive.x}) except for the difference of \(x\) and \(y\), below we use only Eqs. (\ref{eq.motion.x})(\ref{eq.constitutive.x}) and (\ref{eq.motion.z})(\ref{eq.constitutive.z}).

(\ref{eq.motion.x})式の両辺を\(\rho\)で割ると \[\begin{eqnarray} \PartialDiff{V_x}{t} &=& \frac{1}{\rho}\PartialDiff{\tau_{xz}}{z} \nonumber \\ &=& \PartialDiff{}{z}\left(\frac{1}{\rho}\tau_{xz}\right) -\PartialDiff{}{z}\left(\frac{1}{\rho}\right)\tau_{xz} \nonumber \\ &=& \PartialDiff{}{z}\left(\frac{\tau_{xz}}{\rho}\right) +\frac{1}{\rho^2}\PartialDiff{\rho}{z}\tau_{xz} \nonumber \\ &=& \PartialDiff{}{z}\left(\frac{\tau_{xz}}{\rho}\right) +\frac{1}{\rho}\PartialDiff{\rho}{z}\frac{\tau_{xz}}{\rho} \label{eq.motion.x.divided_by_rho} \end{eqnarray}\] となり、 \[\begin{equation} \tau’_{xz}\equiv\tau_{xz}/\rho \label{eq.tau_xz_dash.definition} \end{equation}\] とおけば \[\begin{equation} \PartialDiff{V_x}{t} =\PartialDiff{\tau’_{xz}}{z} +\frac{1}{\rho}\PartialDiff{\rho}{z}\tau’_{xz} \label{eq.motion.x.use_tau_dash} \end{equation}\] が得られる。一方(\ref{eq.constitutive.x})式より (密度\(\rho\)が時刻\(t\)に依存しないことを用いて) \[\begin{equation} \PartialDiff{\tau’_{xz}}{t} =\frac{1}{\rho}\PartialDiff{\tau_xz}{t} =\frac{\mu}{\rho}\PartialDiff{V_x}{z} =V_s^2\PartialDiff{V_x}{z} \label{eq.constitutive.x.use_tau_dash} \end{equation}\] が得られる。 (\ref{eq.motion.x.use_tau_dash})(\ref{eq.constitutive.x.use_tau_dash}) 式は\(V_x\)と\(\tau’_{xz}\)に関する閉じた方程式系になっている。 FDM_1D_verticalコマンドでは 密度の空間変化\(\PartialDiff{\rho}{z}\)が十分に小さいものとし、 (\ref{eq.motion.x.use_tau_dash})式の右辺第2項を無視して \[\begin{equation} \PartialDiff{V_x}{t} =\PartialDiff{\tau’_{xz}}{z} \label{eq.motion.x.use_tau_dash.approx} \end{equation}\] とする。 (\ref{eq.constitutive.x.use_tau_dash})(\ref{eq.motion.x.use_tau_dash.approx}) 式は密度\(\rho\)を明示的に含まない形になっており、 S波速度\(V_s(z)\)のみを与えれば計算を実行できる。 そのため密度変化\(\PartialDiff{\rho}{z}\)が 十分に小さいと仮定したことが矛盾を生じたり、 速度構造の与え方に対する制約になったりすることは無い。
Dividing Eq. (\ref{eq.motion.x}) by \(\rho\) reduces to Eq. (\ref{eq.motion.x.divided_by_rho}), which can be rewritten as (\ref{eq.motion.x.use_tau_dash}), where \(\tau’_{xz}\) is defined by Eq. (\ref{eq.tau_xz_dash.definition}). From Eq. (\ref{eq.constitutive.x}), we obtain Eq. (\ref{eq.constitutive.x.use_tau_dash}) because the density \(\rho\) is independent of time \(t\). Eqs. (\ref{eq.motion.x.use_tau_dash}) and (\ref{eq.constitutive.x.use_tau_dash}) constitute a closed equation system for \(V_x\) and \(\tau’_{xz}\). The FDM_1D_vertical command assumes that the spatial variation of the density (\(\PartialDiff{\rho}{z}\)) is small enough to ignore the 2nd term of the right hand side of Eq. (\ref{eq.motion.x.use_tau_dash}), giving Eq. (\ref{eq.motion.x.use_tau_dash.approx}). Eqs. (\ref{eq.constitutive.x.use_tau_dash}) and (\ref{eq.motion.x.use_tau_dash.approx}) do not explicitly consist of the density \(\rho\), meaning that the calculation requires only the S-wave velocity \(V_s(z)\). Therefore the assumption of small density variation \(\PartialDiff{\rho}{z}\) does not cause an inconsistency, nor results in a constraint for the velocity stcuture.

同様にして(\ref{eq.motion.z})(\ref{eq.constitutive.z})式から \[\begin{equation} \PartialDiff{V_z}{t} =\PartialDiff{\tau’_{zz}}{z} +\frac{1}{\rho}\PartialDiff{\rho}{z}\tau’_{zz} \approx \PartialDiff{\tau’_{zz}}{z} \label{eq.motion.z.use_tau_dash} \end{equation}\] \[\begin{equation} \PartialDiff{\tau’_{zz}}{t}=V_p^2\PartialDiff{V_z}{z} \label{eq.constitutive.z.use_tau_dash} \end{equation}\] が得られる。ここで \[\begin{equation} \tau’_{zz}\equiv\tau_{zz}/\rho \label{eq.tau_zz_dash.definition} \end{equation}\] とおいた。
In the same way, Eqs. (\ref{eq.motion.z}) and (\ref{eq.constitutive.z}) can be arranged to Eqs. (\ref{eq.motion.z.use_tau_dash}) and (\ref{eq.constitutive.z.use_tau_dash}), where \(\tau’_{zz}\) is defined by Eq. (\ref{eq.tau_zz_dash.definition}).