係数 Coefficient |
シングルフォース Single force |
モーメントテンソル Moment tensor |
\(A_n^N\) | \(\frac{1}{4\pi\rho r^3} \sum_{p=1}^3 (3\gamma_n\gamma_p-\delta_{np}) F_p^0\) | \(\frac{1}{4\pi\rho r^4} \sum_{p=1}^3\sum_{q=1}^3\) \((15\gamma_n\gamma_p\gamma_q-3\gamma_n\delta_{pq} -3\gamma_p\delta_{nq}-3\gamma_q\delta_{np}) M_{pq}^0\) |
\(A_n^{PR}\) | \(\frac{1}{4\pi\rho\alpha^2 r}\sum_{p=1}^3 \gamma_n\gamma_p F_p^0\) | \(\frac{1}{4\pi\rho\alpha^2 r^2} \sum_{p=1}^3\sum_{q=1}^3\) \((6\gamma_n\gamma_p\gamma_q-\gamma_n\delta_{pq} -\gamma_p\delta_{nq}-\gamma_q\delta_{np}) M_{pq}^0\) |
\(A_n^{PI}\) | \(0\) | \(\frac{\omega}{4\pi\rho\alpha^3 r} \sum_{p=1}^3\sum_{q=1}^3\) \(\gamma_n\gamma_p\gamma_q M_{pq}^0\) |
\(A_n^{SR}\) | \(\frac{1}{4\pi\rho\beta^2 r}\sum_{p=1}^3 (\gamma_n\gamma_p-\delta_{np})F_p^0\) | \(\frac{1}{4\pi\rho\beta^2 r^2} \sum_{p=1}^3\sum_{q=1}^3\) \((6\gamma_n\gamma_p\gamma_q-\gamma_n\delta_{pq} -\gamma_p\delta_{nq}-2\gamma_q\delta_{np}) M_{pq}^0\) |
\(A_n^{SI}\) | \(0\) | \(\frac{\omega}{4\pi\rho\beta^3 r} \sum_{p=1}^3\sum_{q=1}^3\) \((\gamma_n\gamma_p-\delta_{np})\gamma_q M_{pq}^0\) |