calculate_radiation_patternコマンドで用いている計算式

(Formula used in calculate_radiation_pattern command)


1. 共通の記号 (Common notations)



2. シングルフォースが作る変位波形 (Amplitudes of displacement waveforms generated by a single force)

2-1. 一般式 (General formula)

Aki and Richards (2002)の(4.27)式を使用する。 シングルフォースの時間関数を \(\myvector{F}(t)=(F_1(t),F_2(t),F_3(t))^T\) とおくと、変位波形は以下の式で与えられる。
Eq. (4.27) of Aki and Richards (2002) is used. Let \(\myvector{F}(t)=(F_1(t),F_2(t),F_3(t))^T\) be the time function of the single force. Then the displacement waveform is given by the formula below.

\[\begin{equation} u_n(t)=u_n^{N}(t)+u_n^{FP}(t)+u_n^{FS}(t) \hspace{1em} (n=1,2,3) \label{eq.F} \end{equation}\]


2-2. 単振動ソースに対する変位波形 (Displacement waveforms for a monochromatic oscillation source)

震源時間関数が単振動 \[\begin{equation} F_p(t)=F_p^0e^{i\omega t} \label{eq.Fp.monochromatic} \end{equation}\] で与えられる場合、(\ref{eq.F.N})-(\ref{eq.F.FS})式は以下のように変形できる。
When the source time function is given by eq. (\ref{eq.Fp.monochromatic}), eqs. (\ref{eq.F.N})-(\ref{eq.F.FS}) can be arranged as below.



3. モーメントテンソルが作る変位波形 (Displacement waveforms generated by a moment tensor)

3-1. 一般式 (General formula)

Aki and Richards (2002)の(4.29)式を使用する。 モーメントテンソルの時間関数を \[\begin{equation} \myvector{M}(t)= \begin{pmatrix} M_{11}(t) & M_{12}(t) & M_{13}(t) \\ M_{21}(t) & M_{22}(t) & M_{23}(t) \\ M_{31}(t) & M_{32}(t) & M_{33}(t) \end{pmatrix} \label{eq.moment} \end{equation}\] とおくと、変位波形は以下の式で与えられる。
Eq. (4.29) of Aki and Richards (2002) is used. Let \(\myvector{M}(t)\) (eq. \ref{eq.moment}) be the time function of the moment tensor. Then the displacement waveform is given by the formula below.

\[\begin{equation} u_n(t)=u_n^{N}(t)+u_n^{IP}(t)+u_n^{IS}(t)+u_n^{FP}(t)+u_n^{FS}(t) \hspace{1em} (n=1,2,3) \label{eq.M} \end{equation}\]


3-2. 単振動ソースに対する変位波形 (Displacement waveforms for a monochromatic oscillation source)

震源時間関数が単振動 \[\begin{equation} M_{pq}(t)=M_{pq}^0e^{i\omega t} \label{eq.Mpq.monochromatic} \end{equation}\] で与えられる場合、(\ref{eq.M.N})-(\ref{eq.M.FS})式は以下のように変形できる。
When the source time function is given by eq. (\ref{eq.Mpq.monochromatic}), eqs. (\ref{eq.M.N})-(\ref{eq.M.FS}) can be arranged as below.



4. 統一された表記 (Unified expressions)

シングルフォースに対する式 (\ref{eq.F.N.monochromatic})-(\ref{eq.F.FS.monochromatic}) とモーメントテンソルに対する式 (\ref{eq.M.N.monochromatic})-(\ref{eq.M.FS.monochromatic}) は係数の違いを除いて同じ形をしており、以下の形に統一できる。
The formulas for single force (\ref{eq.F.N.monochromatic})-(\ref{eq.F.FS.monochromatic}) and moment tensor (\ref{eq.M.N.monochromatic})-(\ref{eq.M.FS.monochromatic}) have the same shapes except for the differences in coefficients, and can be unified into the expressions below.

ここで係数は以下のように与えられる。
Here the coefficients are given as below.

係数
Coefficient
シングルフォース
Single force
モーメントテンソル
Moment tensor
\(A_n^N\) \(\frac{1}{4\pi\rho r^3} \sum_{p=1}^3 (3\gamma_n\gamma_p-\delta_{np}) F_p^0\) \(\frac{1}{4\pi\rho r^4} \sum_{p=1}^3\sum_{q=1}^3\) \((15\gamma_n\gamma_p\gamma_q-3\gamma_n\delta_{pq} -3\gamma_p\delta_{nq}-3\gamma_q\delta_{np}) M_{pq}^0\)
\(A_n^{PR}\) \(\frac{1}{4\pi\rho\alpha^2 r}\sum_{p=1}^3 \gamma_n\gamma_p F_p^0\) \(\frac{1}{4\pi\rho\alpha^2 r^2} \sum_{p=1}^3\sum_{q=1}^3\) \((6\gamma_n\gamma_p\gamma_q-\gamma_n\delta_{pq} -\gamma_p\delta_{nq}-\gamma_q\delta_{np}) M_{pq}^0\)
\(A_n^{PI}\) \(0\) \(\frac{\omega}{4\pi\rho\alpha^3 r} \sum_{p=1}^3\sum_{q=1}^3\) \(\gamma_n\gamma_p\gamma_q M_{pq}^0\)
\(A_n^{SR}\) \(\frac{1}{4\pi\rho\beta^2 r}\sum_{p=1}^3 (\gamma_n\gamma_p-\delta_{np})F_p^0\) \(\frac{1}{4\pi\rho\beta^2 r^2} \sum_{p=1}^3\sum_{q=1}^3\) \((6\gamma_n\gamma_p\gamma_q-\gamma_n\delta_{pq} -\gamma_p\delta_{nq}-2\gamma_q\delta_{np}) M_{pq}^0\)
\(A_n^{SI}\) \(0\) \(\frac{\omega}{4\pi\rho\beta^3 r} \sum_{p=1}^3\sum_{q=1}^3\) \((\gamma_n\gamma_p-\delta_{np})\gamma_q M_{pq}^0\)

(\ref{eq.N.monochromatic.unified})-(\ref{eq.S.monochromatic.unified}) 式を用いると、全ての項を足した変位波形は以下の形に書ける。
Using eqs. (\ref{eq.N.monochromatic.unified})-(\ref{eq.S.monochromatic.unified}), the displacement waveform including contributions from all terms is written as below.

\[\begin{eqnarray} u_n(t) &=& A_n^N \left[ \left(-\frac{r}{i\omega\beta}+\frac{1}{\omega^2}\right) e^{i\omega(t-r/\beta)} -\left(-\frac{r}{i\omega\alpha}+\frac{1}{\omega^2}\right) e^{i\omega(t-r/\alpha)} \right] \nonumber \\ & & +\left(A_n^{PR}+A_n^{PI}i\right)e^{i\omega(t-r/\alpha)} \nonumber \\ & & -\left(A_n^{SR}+A_n^{SI}i\right)e^{i\omega(t-r/\beta)} \nonumber \\ &=& \left[ A_n^{PR}+A_n^{PI}i -A_n^N\left(-\frac{r}{i\omega\alpha}+\frac{1}{\omega^2}\right) \right]e^{i\omega(t-r/\alpha)} \nonumber \\ & & -\left[ A_n^{SR}+A_n^{SI}i -A_n^N\left(-\frac{r}{i\omega\beta}+\frac{1}{\omega^2}\right) \right]e^{i\omega(t-r/\beta)} \nonumber \\ &=& \left[ A_n^{PR}+A_n^{PI}i -A_n^N\left(\frac{r}{\omega\alpha}i+\frac{1}{\omega^2}\right) \right]e^{i\omega(t-r/\alpha)} \nonumber \\ & & -\left[ A_n^{SR}+A_n^{SI}i -A_n^N\left(\frac{r}{\omega\beta}i+\frac{1}{\omega^2}\right) \right]e^{i\omega(t-r/\beta)} \nonumber \\ &=& \left[ \left(A_n^{PR}-\frac{A_n^N}{\omega^2}\right) +\left(A_n^{PI}-\frac{rA_n^N}{\omega\alpha}\right)i \right]e^{i\omega(t-r/\alpha)} \nonumber \\ & & -\left[ \left(A_n^{SR}-\frac{A_n^N}{\omega^2}\right) +\left(A_n^{SI}-\frac{rA_n^N}{\omega\beta}\right)i \right]e^{i\omega(t-r/\beta)} \label{eq.un} \end{eqnarray}\]

5. 変位振幅の式 (Formula for displacement amplitude)

変位振幅は \[\begin{equation} |u_n(t)| =\sqrt{u_n(t)^{∗}u_n(t)} \label{eq.abs_un} \end{equation}\] で計算できる。ここで\(^{∗}\)は複素共役を表す。
The displacement amplitude is computed by eq. (\ref{eq.abs_un}), where \(^{∗}\) represents a complex conjugate.

簡単のため \[\begin{equation} B^{PR}\equiv A_n^{PR}-\frac{A_n^N}{\omega^2} \label{eq.B_PR} \end{equation}\] \[\begin{equation} B^{PI}\equiv A_n^{PI}-\frac{rA_n^N}{\omega\alpha} \label{eq.B_PI} \end{equation}\] \[\begin{equation} B^{SR}\equiv A_n^{SR}-\frac{A_n^N}{\omega^2} \label{eq.B_SR} \end{equation}\] \[\begin{equation} B^{SI}\equiv A_n^{SI}-\frac{rA_n^N}{\omega\beta} \label{eq.B_SI} \end{equation}\] とおくと(\ref{eq.un})式は \[\begin{equation} u_n(t)= \left(B^{PR}+B^{PI}i\right)e^{i\omega(t-r/\alpha)} -\left(B^{SR}+B^{SI}i\right)e^{i\omega(t-r/\beta)} \label{eq.un.use_B} \end{equation}\] その複素共役は \[\begin{equation} u_n(t)^{∗}= \left(B^{PR}-B^{PI}i\right)e^{-i\omega(t-r/\alpha)} -\left(B^{SR}-B^{SI}i\right)e^{-i\omega(t-r/\beta)} \label{eq.un_conjugate.use_B} \end{equation}\] であるので \[\begin{eqnarray} u_n(t)^{∗}u_n(t) &=& \left[ \left(B^{PR}-B^{PI}i\right)e^{-i\omega(t-r/\alpha)} -\left(B^{SR}-B^{SI}i\right)e^{-i\omega(t-r/\beta)} \right] \nonumber \\ & & \left[ \left(B^{PR}+B^{PI}i\right)e^{i\omega(t-r/\alpha)} -\left(B^{SR}+B^{SI}i\right)e^{i\omega(t-r/\beta)} \right] \nonumber \\ &=& \left(B^{PR}-B^{PI}i\right)\left(B^{PR}+B^{PI}i\right) \nonumber \\ & & -\left(B^{PR}-B^{PI}i\right)\left(B^{SR}+B^{SI}i\right) e^{-i\omega(t-r/\alpha)}e^{i\omega(t-r/\beta)} \nonumber \\ & & -\left(B^{SR}-B^{SI}i\right)\left(B^{PR}+B^{PI}i\right) e^{-i\omega(t-r/\beta)}e^{i\omega(t-r/\alpha)} \nonumber \\ & & +\left(B^{SR}-B^{SI}i\right)\left(B^{SR}+B^{SI}i\right) \nonumber \\ &=& \left[\left(B^{PR}\right)^2+\left(B^{PI}\right)^2\right] \nonumber \\ & & -\left[B^{PR}B^{SR}+B^{PR}B^{SI}i-B^{PI}B^{SR}i+B^{PI}B^{SI}\right] e^{i\omega(r/\alpha-r/\beta)} \nonumber \\ & & -\left[B^{SR}B^{PR}+B^{SR}B^{PI}i-B^{SI}B^{PR}i+B^{SI}B^{PI}\right] e^{i\omega(r/\beta-r/\alpha)} \nonumber \\ & & \left[\left(B^{SR}\right)^2+\left(B^{SI}\right)^2\right] \nonumber \\ &=& \left[\left(B^{PR}\right)^2+\left(B^{PI}\right)^2 +\left(B^{SR}\right)^2+\left(B^{SI}\right)^2\right] \nonumber \\ & & -\left[B^{PR}B^{SR}+B^{PR}B^{SI}i-B^{PI}B^{SR}i+B^{PI}B^{SI}\right] e^{-i\omega(r/\beta-r/\alpha)} \nonumber \\ & & -\left[B^{PR}B^{SR}-B^{PR}B^{SI}i+B^{PI}B^{SR}i+B^{PI}B^{SI}\right] e^{i\omega(r/\beta-r/\alpha)} \nonumber \\ &=& \left[\left(B^{PR}\right)^2+\left(B^{PI}\right)^2 +\left(B^{SR}\right)^2+\left(B^{SI}\right)^2\right] \nonumber \\ & & -\left[B^{PR}B^{SR}+B^{PI}B^{SI}\right] \left[e^{i\omega(r/\beta-r/\alpha)}+e^{-i\omega(r/\beta-r/\alpha)}\right] \nonumber \\ & & -\left[-B^{PR}B^{SI}i+B^{PI}B^{SR}i\right] \left[e^{i\omega(r/\beta-r/\alpha)}-e^{-i\omega(r/\beta-r/\alpha)}\right] \nonumber \\ &=& \left[\left(B^{PR}\right)^2+\left(B^{PI}\right)^2 +\left(B^{SR}\right)^2+\left(B^{SI}\right)^2\right] \nonumber \\ & & -\left[B^{PR}B^{SR}+B^{PI}B^{SI}\right]\cdot 2\cos\left(\frac{\omega r}{\beta}-\frac{\omega r}{\alpha}\right) \nonumber \\ & & +\left[B^{PR}B^{SI}-B^{PI}B^{SR}\right]i\cdot 2\sin\left(\frac{\omega r}{\beta}-\frac{\omega r}{\alpha}\right)i \nonumber \\ &=& \left[\left(B^{PR}\right)^2+\left(B^{PI}\right)^2 +\left(B^{SR}\right)^2+\left(B^{SI}\right)^2\right] \nonumber \\ & & -2\left[B^{PR}B^{SR}+B^{PI}B^{SI}\right] \cos\left(\frac{\omega r}{\beta}-\frac{\omega r}{\alpha}\right) \nonumber \\ & & -2\left[B^{PR}B^{SI}-B^{PI}B^{SR}\right] \sin\left(\frac{\omega r}{\beta}-\frac{\omega r}{\alpha}\right) \label{eq.abs_u2.use_B} \end{eqnarray}\] となる。 calculate_radiaiton_patternコマンドでは (\ref{eq.abs_un})(\ref{eq.abs_u2.use_B})式を用いて計算を行う。
For simplicity, \(B^{PR}\), \(B^{PI}\), \(B^{SR}\), and \(B^{SI}\) are defined by eqs. (\ref{eq.B_PR})-(\ref{eq.B_SI}). Then eq. (\ref{eq.un}) can be rewritten as (\ref{eq.un.use_B}), and the complex conjugate of it can be written as (\ref{eq.un_conjugate.use_B}). Therefore eq. (\ref{eq.abs_u2.use_B}) is derived. The calculate_radiation_pattern command uses eqs. (\ref{eq.abs_un}) and (\ref{eq.abs_u2.use_B}) for the computation.