rho | 密度\(\rho\) [kg m\(^{-3}\)]。 The density \(\rho\) [kg m\(^{-3}\)]. |
T | 温度\(T\) [K]。 The temperature \(T\) [K]. |
メンバ Member |
量 Quantity |
計算式(Wagner and Pruss (2002)の表6.3に基づく) Formula (from Table 6.3 of Wagner and Pruss (2002)) |
p | 圧力 [Pa] Pressure [Pa] |
\[\begin{equation*} \rho R T (1+\delta \phi_{\delta}^r) \end{equation*}\] |
s | 単位質量あたりのエントロピー [J kg\(^{-1}\) K\(^{-1}\)] Entropy per unit mass [J kg\(^{-1}\) K\(^{-1}\)] |
\[\begin{equation*} R[\tau(\phi_{\tau}^o+\phi_{\tau}^r)-\phi^o-\phi^r] \end{equation*}\] |
u | 単位質量あたりの内部エネルギー [J kg\(^{-1}\)] Internal energy per unit mass [J kg\(^{-1}\)] |
\[\begin{equation*} RT\tau(\phi_{\tau}^o+\phi_{\tau}^r) \end{equation*}\] |
h | 単位質量あたりのエンタルピー [J kg\(^{-1}\)] Enthalpy per unit mass [J kg\(^{-1}\)] |
\[\begin{equation*} RT[1+\tau(\phi_{\tau}^o+\phi_{\tau}^r)+\delta\phi_{\delta}^r] \end{equation*}\] |
f | 単位質量あたりのヘルムホルツの自由エネルギー [J kg\(^{-1}\)] Helmholtz free energy per unit mass [J kg\(^{-1}\)] |
\[\begin{equation*} RT(\phi^o+\phi^r) \end{equation*}\] |
g | 単位質量あたりのギブスの自由エネルギー [J kg\(^{-1}\)] Gibbs free energy per unit mass [J kg\(^{-1}\)] |
\[\begin{equation*} RT(1+\phi^o+\phi^r+\delta\phi_{\delta}^r) \end{equation*}\] |
cv | 定積比熱 [J kg\(^{-1}\) K\(^{-1}\)] Isochoric heat capacity [J kg\(^{-1}\) K\(^{-1}\)] |
\[\begin{equation*} -R\tau^2(\phi_{\tau\tau}^o+\phi_{\tau\tau}^r) \end{equation*}\] |
cp | 定圧比熱 [J kg\(^{-1}\) K\(^{-1}\)] Isobaric heat capacity [J kg\(^{-1}\) K\(^{-1}\)] |
\[\begin{equation*} -R\tau^2(\phi_{\tau\tau}^o+\phi_{\tau\tau}^r) +R\frac{(1+\delta\phi_{\delta}^r-\delta\tau\phi_{\delta\tau}^r)^2} {1+2\delta\phi_{\delta}^r+\delta^2\phi_{\delta\delta}^r} \end{equation*}\] |
w | 音速 [m s\(^{-1}\)] Sound speed [m s\(^{-1}\)] |
\[\begin{equation*} \sqrt{RT\left[ 1+2\delta\phi_{\delta}^r+\delta^2\phi_{\delta\delta}^r -\frac{(1+\delta\phi_{\delta}^r-\delta\tau\phi_{\delta\tau}^r)^2} {\tau^2(\phi_{\tau\tau}^o+\phi_{\tau\tau}^r)} \right]} \end{equation*}\] |
dp_drho_fixT | \(\left(\PartialDiff{p}{\rho}\right)_T\) | \[\begin{equation*} RT(1+2\delta\phi_{\delta}^r+\delta^2\phi_{\delta\delta}^r) \end{equation*}\] |