図1. 半格子点の概念。 黒枠で囲まれた茶色の正方形は個々の格子セルを表し、 分かりやすさのため1つのセルを赤色で示した。 青色の点が半格子点である。 Fig. 1. The concept of half-grid nodes. The brown squares bounded by black outlines are individual grid cells; one of them is shown by red for better illustration. The blue points are the half-grid nodes. |
図2. 方向別インデックスの概念。 Fig. 2. The concept of directional indices. |
図3. 通し番号の概念。 Fig. 3. The concept of a consecutive index. |
図4. 特定の量のための通し番号の概念。 (a) 速度の水平成分用の例、(b)応力の非対角成分用の例。 Fig. 4. The concept of a consecutive index for a specific quantity: examples for (a) the horizontal component of the velocity, (b) the off-diagonal components of the stress. |
メンバ Member |
waterPMLコマンドにおける意味 Meaning in the waterPML command |
Nv | 異なる場所で定義された量の数であり、
\(12+3\times\)地震波動ソースの個数となる。 The number of quantities defined at different locations and equals to \(12+3\times\)the number of seismic sources. |
Ng | 半格子点の総数。 The total number of half-grid nodes. |
index[iv][ig] | ig番目の半格子点(方法2)における
iv番目の量のための通し番号(方法3-2)。 The consecutive index of the ivth quantity (method 3-2) at the igth half-grid node (method 2). |
量 Quantity |
定義位置1 Definition locations1 |
iv | ||||||
c | x | y | z | xy | yz | zx | ||
密度\(\rho\) Density \(\rho\) |
○ | ○ | ○ | ○ | ○ | ○ | ○ | 0 |
ラメ定数\(\lambda\) Lame constant \(\lambda\) | ||||||||
ラメ定数\(\mu\) Lame constant \(\mu\) | ||||||||
PML領域における波動の吸収の強さ\(\alpha^k\) (\(k=0,1,2\))
(計算式の(14)式) The strength of wave absorption in the PML volume \(\alpha^k\) (\(k=0,1,2\)) (Eq. 14 of formula) | ||||||||
差分方程式の係数\(c_0^k\) (\(k=0,1,2\))
(
離散化後の計算式の(7)式) The coefficients \(c_0^k\) (\(k=0,1,2\)) of difference equations (Eq. 7 of discretized formula) | ||||||||
速度の\(x\)成分\(V_0^k\) (\(k=0,1,2\)) The \(x\)-component of velocity \(V_0^k\) (\(k=0,1,2\)) |
○ | 1 | ||||||
速度の\(y\)成分\(V_1^k\) (\(k=0,1,2\)) The \(y\)-component of velocity \(V_1^k\) (\(k=0,1,2\)) |
○ | 2 | ||||||
速度の\(z\)成分\(V_2^k\) (\(k=0,1,2\)) The \(z\)-component of velocity \(V_2^k\) (\(k=0,1,2\)) |
○ | 3 | ||||||
応力の\(xx\)成分\(\tau_{xx}^l\) (\(l=0,1,2\)) The \(xx\)-component of stress \(\tau_{xx}^l\) (\(l=0,1,2\)) |
○ | 4 | ||||||
応力の\(yy\)成分\(\tau_{yy}^l\) (\(l=0,1,2\)) The \(yy\)-component of stress \(\tau_{yy}^l\) (\(l=0,1,2\)) | ||||||||
応力の\(zz\)成分\(\tau_{zz}^l\) (\(l=0,1,2\)) The \(zz\)-component of stress \(\tau_{zz}^l\) (\(l=0,1,2\)) | ||||||||
応力の\(xy\)成分\(\tau_{xy}^l\)
および\(yx\)成分\(\tau_{yx}^l\) (\(l=0,1,2\)) The \(xy\)- and \(yx\)-components of stress \(\tau_{xy}^l\), \(\tau_{yx}^l\) (\(l=0,1,2\)) |
○ | 5 | ||||||
応力の\(yz\)成分\(\tau_{yz}^l\)
および\(zy\)成分\(\tau_{zy}^l\) (\(l=0,1,2\)) The \(yz\)- and \(zy\)-components of stress \(\tau_{yz}^l\), \(\tau_{zy}^l\) (\(l=0,1,2\)) |
○ | 6 | ||||||
応力の\(zx\)成分\(\tau_{zx}^l\)
および\(xz\)成分\(\tau_{xz}^l\) (\(l=0,1,2\)) The \(zx\)- and \(xz\)-components of stress \(\tau_{zx}^l\), \(\tau_{xz}^l\) (\(l=0,1,2\)) |
○ | 7 | ||||||
観測点リスト Station list |
○2 | 8 | ||||||
差分方程式の係数\(c_1^k\) (\(k=0,1,2\))
(
離散化後の計算式の(8)式) The coefficients \(c_1^k\) (\(k=0,1,2\)) of difference equations (Eq. 8 of discretized formula) |
○ | ○ | ○ | 9 | ||||
差分方程式の係数\(c_2^{ijpl}\) (\(i,j,p,l=0,1,2; i=j, p=l\))
(
離散化後の計算式の(14)式) The coefficients \(c_2^{ijpl}\) (\(i,j,p,l=0,1,2; i=j, p=l\)) of difference equations (Eq. 14 of discretized formula) |
○ | 10 | ||||||
差分方程式の係数\(c_2^{ijpl}\) (\(i,j,p,l=0,1,2; i\neq j\))
(
離散化後の計算式の(14)式) The coefficients \(c_2^{ijpl}\) (\(i,j,p,l=0,1,2; i\neq j\)) of difference equations (Eq. 14 of discretized formula) |
○ | ○ | ○ | 11 | ||||
is番目(\(is=0,1,2,\cdots\))の地震波動ソースによる
等価体積力の\(x\)成分\(f_0\) The \(x\)-component of equivalent body force \(f_0\) from isth seismic source (\(is=0,1,2,\cdots\)) |
○3 | \(12+3\times is\) | ||||||
is番目(\(is=0,1,2,\cdots\))の地震波動ソースによる
等価体積力の\(y\)成分\(f_1\) The \(y\)-component of equivalent body force \(f_1\) from isth seismic source (\(is=0,1,2,\cdots\)) |
○3 | \(13+3\times is\) | ||||||
is番目(\(is=0,1,2,\cdots\))の地震波動ソースによる
等価体積力の\(z\)成分\(f_2\) The \(z\)-component of equivalent body force \(f_2\) from isth seismic source (\(is=0,1,2,\cdots\)) |
○3 | \(14+3\times is\) |